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Using helical-wave decomposition (HWD), a solenoidal vector field can be
decomposed into helical modes with different wavenumbers and polarities. Here,
we first review the general formulation of HWD in an arbitrary single-connected
domain, along with some new development. We then apply the theory to a viscous
incompressible turbulent channel flow with system rotation, including a derivation of
helical bases for a channel domain. By these helical bases, we construct the inviscid
inertial-wave (IW) solutions in a rotating channel and derive their existing condition.
The condition determines the specific wavenumber and polarity of the IW. For a set of
channel turbulent flows rotating about a streamwise axis, this channel-domain HWD
is used to decompose the flow data obtained by direct numerical simulation. The
numerical results indicate that the streamwise rotation induces a polarity-asymmetry
and concentrates the fluctuating energy to particular helical modes. At large rotation
rates, the energy spectra of opposite polarities exhibit different scaling laws. The
nonlinear energy transfer between different helical modes is also discussed. Further
investigation reveals that the IWs do exist when the streamwise rotation is strong
enough, for which the theoretical predictions and numerical results are in perfect
agreement in the core region. The wavenumber and polarity of the IW coincide with
that of the most energetic helical modes in the energy spectra. The flow visualizations
show that away from the channel walls, the small vortical structures are clustered
to form very long columns, which move in the wall-parallel plane and serve as the
carrier of the IW. These discoveries also help clarify certain puzzling problems raised
in previous studies of streamwise-rotating channel turbulence.
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1. Introduction
System rotation is a frequently encountered circumstance in geophysical and

engineering flows, such as large-scale atmospheric and oceanic flows and turbo-
machinery flows. Rotating flow has long been an important branch of fluid dynamics
(e.g. Phillips 1963; Greenspan 1969). Among various model-flow problems in the
studies of rotating turbulence, rotating channel and pipe have been good vehicles
since they are relatively easy to manufacture in experiment or simulate by numerical
methods, and yet still may provide insights into wall-bounded rotating turbulence.
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Early studies of the rotating-channel turbulence mainly focused on the spanwise
rotation, i.e. the rotating axis parallel to the channel wall and perpendicular to
the direction of the mean pressure gradient, such as the experiments by Johnston,
Halleen & Lezius (1972) and Nakabayashi & Kitoh (1996, 2005), and the direct
numerical simulations (DNS) by Kristoffersen & Andersson (1993) and Grundestam,
Wallin & Johansson (2008). Recently, channel turbulence with streamwise rotation
was investigated by several groups. Wu & Kasagi (2004) conducted the DNS of
the channel flow with arbitrary directional rotation. Oberlack et al. (2006) used
group analysis to study the streamwise-rotating channel theoretically, and validated
the theory by DNS and turbulent model computation including Reynolds-averaged
modelling and large-eddy simulation (LES). One major observation of these studies
is the appearance of a secondary mean flow in the spanwise direction, which is zero
at the centreline and antisymmetric about it. When observed against the rotating
axis, the secondary mean flow is in the same direction as the rotation near the walls
but in the opposite direction in the central region. The latter is referred to as the
reverse mean flow in the spanwise direction. Similar secondary flow has also been
found by Masuda, Fukuda & Nagata (2008) in a stability analysis of the plane
Poiseuille flow at very low Reynolds number.

The same features of streamwise-rotating channel turbulence have been further
studied by Recktenwald et al. (2007) by both experiment and DNS. The streamwise
two-point correlations in their numerical results revealed that at the centre region
of the channel there exist structures with very large streamwise scale. These long
structures also exist in the streamwise-rotating pipe (see Orlandi & Fatica 1997). In
the experiments of Recktenwald et al. (2007), however, no distinct reverse flow was
found in the spanwise direction at the channel centre. Later, Alkishriwi, Meinke &
Schröder (2008) and Recktenwald, Alkishriwi & Schröder (2009) conducted LES
for streamwise-rotating channel with much larger computational box and different
boundary conditions in the spanwise direction. The results show that in the LES
with a larger domain the reverse mean flow is weaker than the DNS results, and was
further reduced by introducing the no-slip endwalls in the spanwise direction. But
the reverse mean flow, not seen in experiment, still existed in all these simulations.
Nevertheless, one common understanding of the reverse spanwise flow at the channel
centre is that it is related to the structures with large streamwise scales (e.g. see
Recktenwald et al. 2007; Alkishriwi et al. 2008).

So far most research on the above problem has been confined to the physical
space. In this study, we introduce the so-called helical-wave decomposition (HWD)
to the channel turbulence with system rotation. For an arbitrary simple domain,
the HWD decomposes a solenoidal vector field, such as velocity and vorticity of
incompressible flows, into helical modes with different wavenumbers and opposite
polarities. In our view, the polarities of a solenoidal vector field represent its two
intrinsic independent components or degrees of freedom. Thus, HWD is a natural
way to examine the respective physical role of each component and the coupling of
multi-scales and opposite polarities. In fact, only a combined use of the Helmholtz–
Hodge decomposition (HHD) and HWD can split a vector field into its finest intrinsic
building blocks (see Wu, Ma & Zhou 2006). In many flows, although there is no
predominance of a specific polarity, by introducing the polarity we may obtain new
insights into the flow physics. Moreover, in some flows the polarity-symmetry may be
broken. One example is the flow with system rotation, as we will discuss below.

This point of view has been supported by the previous discoveries of some
innovative features by applying HWD to complex vortical flows and turbulence. In a
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study of energy cascades for homogeneous turbulence, Waleffe (1992) has used HWD
to investigate the triad interactions of helical modes and found that the polarities
affect the direction of the energy transfer in each triad. Ditlevsen & Giuliani (2001a,b)
utilized HWD to study the joint cascade of energy and helicity. Later, Chen, Chen &
Eyink (2003) re-examined the same problem and proved that the nonlinear transfer
between two opposite polarities permits the joint cascade. By studying the polarity
property of flow structures, Hussain and co-workers found that the background fine-
scale turbulence induces highly polarized and organized secondary structures near the
coherent vortex (see Melander & Hussain 1993a ,b).

HWD has already exhibited great advantages in the study of the rotating
homogeneous turbulence. By studying the resonant-triad interactions and introducing
an instability assumption, Waleffe (1993) showed that the flow has a tendency towards
nonlinear two-dimensionalization, namely in each resonant triad the energy tends to
be transferred to the wavenumber vectors whose angles with the rotating axis are
closer to 90◦. However, the author also proved that via the resonant triads there is
no direct energy transfer between the strictly two-dimensional modes and the non-
zero-frequency inertial-wave (IW) modes. For the moderate rotation rate, Smith &
Lee (2005) verified numerically that the near-resonant-triad interactions dominate the
energy transfer to the two-dimensional modes. The DNS results of Chen et al. (2005)
showed the decoupling between the two-dimensional modes and the three-dimensional
modes for moderate and relatively high rotation rates, which is consistent with the
theoretical prediction of Waleffe (1993). Using equilibrium statistical mechanics at
even higher rotation rates, this decoupling mechanism was also verified by Bourouiba
(2008) until a certain time scale. Smith & Waleffe (1999) and Bourouiba & Bartello
(2007) also observed the generation of the energetic two-dimensional modes in forced
and decay rotating turbulent flows, respectively. Meanwhile, the HWD theory has
been used to develop the closure model of rapidly rotating fluid by Cambon’s group
(see Bellet et al. 2006, and the reference therein).

A unique feature of the helical modes is that they can form the IW in a rotating
fluid, as addressed by Greenspan (1969). The IW have been detected in the rotating
tank by Bewley et al. (2007) and the spherical Couette flow by Kelley et al. (2010). The
linear propagation of the IW provided an alternative explanation for the formation of
the long columnar vortices in the experiments of the rotating homogeneous turbulence
conducted by Davidson, Staplehurst & Dalziel (2006).

Despite the suitability of HWD to rotating turbulence and much research on
the periodic domain, only a few studies have applied HWD to bounded domains.
Nevertheless, Yoshida & Giga (1990) have laid the mathematical foundations for the
application of HWD to an arbitrary domain. Chen et al. (2003) mentioned that their
theory can be applied to a wall-bounded domain, but their numerical investigations
were all in the periodic box. The HWD expansion has been used to simulate the
magnetohydrodynamic activity in a rotating sphere by Shan & Montgomery (1994),
Mininni & Montgomery (2006) and Mininni, Montgomery & Turner (2007). Recently,
Ulitsky, Clark & Turner (1999) simulated channel flow with free-slip walls by HWD
method, by which they aimed to test the random phase approximation. Later, Turner
(2000) developed a complete HWD formulation for a channel domain, by which the
author studied the turbulent closure for the inhomogeneous channel flow.

In this paper we combine the HWD theory and our DNS data of turbulent
channel flow with streamwise rotation. We perform a scale-polarity decomposition by
HWD to analyse the flow in the helical spectral space, such as helical spectrum and
nonlinear energy transfer. The helical basis functions will also be used to construct
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the IW solutions in the rotating channel. By doing so we try to clarify some puzzling
issues on turbulent structures discovered in the streamwise-rotating channel flow, as
mentioned by Recktenwald et al. (2007, 2009).

The remainder of the paper is organized as follows. In § 2, we briefly describe the
HWD theory for bounded domains and its applications to viscous incompressible
flow. We also derive a new formula for the bounded-domain HWD of the curl of
a solenoidal vector field, and a complete set of helical bases for channel domains,
which is different from that of Turner (2000). In § 3, we apply the general bounded-
domain HWD theory to rotating channel flow, with special attention to the form
and condition of IW solutions in a channel. In § 4, we introduce our DNS results of
streamwise-rotating channel turbulence, and apply the numerical HWD to examine
the helical-mode statistics and dynamics. In § 5, we focus on the IW and long
streamwise coherent structures, followed by our conclusion given in § 6.

2. General theory and applications to a channel domain
In this section, we make a brief review of the general HWD theory, followed by its

specification to a channel domain.

2.1. Helical-wave decomposition for an arbitrary domain

By the well-known HHD, any vector v defined on a single-connected domain D can
be uniquely decomposed to

v = v� + v⊥ = ∇φ + ∇ × ψ, (2.1a)

with conditions at the domain boundary ∂D

n · ∇φ = n · v, n · v⊥ = 0 on ∂D, (2.1b)

with n being the unit normal vector pointing out of the domain. Equation (2.1)
divides a vector field into a curl-free component v� and a divergence-free component
v⊥, which will be called the longitudinal and transverse parts, respectively, as in Wu
et al. (2006).

Then, Yoshida & Giga (1990) proved that the curl operator is self-adjoint if the
vector field satisfies the non-penetration boundary. The authors proposed a theorem,
which ensures that any transverse vector can be uniquely expanded by a complete set
of helical bases {φs(x)}. Each of the bases is the solution of the eigenproblem

∇ × φs(x) = skφs(x) on D, (2.2a)

n · φs(x) = 0 on ∂D, (2.2b)

where s = ±1 is the polarity index and will always be denoted by subscript, and sk is
the eigenvalue associated with the eigenfunction φs(x). For the channel domain, due
to the capability of separation of variables in the three dimensions of the physical
space, the eigenvalue can be written as a wavenumber vector k, as in a periodic
domain. Thus, throughout this paper, we keep using the vector form k. Clearly,
each helical basis corresponds to a Beltramian field, i.e. the vector field is parallel to
its curl everywhere. The helical bases are functionally orthogonal for both different
wavenumbers and polarities:∫

D
φs(p, x) · φ∗

t (q, x) dx = δst δpq, (2.3)
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where the asterisk (*) means complex conjugate and δ is the Kronecker delta. Now,
by HHD and HWD one can expand a vector field to

v = ∇φ +
∑

s

∑
k

v̂s(k)φs(k, x), (2.4)

where the helical coefficient or amplitude of mode (s, k) is given by

v̂s(k) =

∫
D

v(x) · φ∗
s (k, x) dx, (2.5)

since a potential field ∇φ is functionally orthogonal to any helical basis.
One often encounters vector fields as well as their curls in the fluid dynamics,

like velocity and its curl, vorticity. While the relation between the helical coefficients
of a vector field and its curl is simple for periodic or unbounded domains, it is
no longer so in a bounded domain. Rather, we have the following proposition.

Proposition. If solenoidal vector field v defined on domain D has a helical expansion
v =

∑
s,k v̂s(k)φs(k, x), then its curl ξ = ∇ × v will have the helical expansion

ξ = ∇ × v = ∇ϕ +
∑
s,k

[sk v̂s + bs(k)]φs, (2.6a)

where ∇ϕ is the longitudinal part of ξ , and

bs(k) =

∮
∂D

n · [v(x) × φ∗
s (k, x)] dS =

∮
∂D

(n × v) · φ∗
s (k, x) dS (2.6b)

is the contribution of the boundary.

Proof. Since the curl field ξ may not satisfy the boundary condition (2.2b) although
v does, ξ may have a non-trivial longitudinal part ∇ϕ, with ϕ being harmonic to make
n · ξ⊥ = 0. Obviously, if v consists of finitely many modes, then the curl operator and
summation are commutable and bs = ϕ = 0. Generally, when v consists of infinitely
many modes, the operator curl cannot be directly shifted into the summation since
the resulting series may not converge. Suppose ξ has expansion

ξ = ∇ × v = ∇ϕ +
∑
s,k

ξ̂s(k)φs(k). (2.7)

Then by the orthogonal property (2.3), along with Gaussian theorem and (2.2a), one
has

ξ̂s(k) =

∫
D
(∇ × v − ∇ϕ) · φ∗

s dx =

∫
D

∇ × v · φ∗
s dx

=

∫
D

v · ∇ × φ∗
s dx +

∫
D

∇ · (v × φ∗
s ) dx

= sk

∫
D

v · φ∗
s dx +

∮
∂D

n · (v × φ∗
s ) dS

= skv̂s(k) +

∮
∂D

(n × v) · φ∗
s dS, (2.8)

and the proof is completed.

2.2. Helical-wave decomposition of the incompressible Navier–Stokes equation

For an incompressible viscous flow with no-slip and stationary boundary, if velocity u
has helical coefficients ûs(k), then the Proposition indicates that the helical coefficients
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of vorticity are

ω̂s(k) = sk ûs(k), (2.9)

where the boundary integral vanishes because u ≡ 0 at the boundary. The coefficients
of ∇ × ω are

d̂s(k) = k2 ûs +

∮
∂D

(n × ω) · φ∗
s (k, x) dS, (2.10)

because usually the tangential component of ω is not zero at a no-slip boundary.
For such a flow, the continuity equation and Navier–Stokes (NS) equation read,

with unit density,

∇ · u = 0, (2.11a)

∂u

∂t
+ l = −∇P + ν∇2u, (2.11b)

where l = ω × u is the Lamb vector, P = p + |u|2/2 is the total pressure and ν is the
kinematic viscosity. As shown by Wu et al. (2006), applying HHD to each term of
(2.11b), one has the longitudinal and transverse parts as

∇(P + ψ + νχ) = 0, (2.12a)

∂u

∂t
+ l⊥ = −ν(∇ × ω)⊥, (2.12b)

where ψ and χ are the longitudinal potentials of l and ∇2u, respectively. Notice that
∇P is purely longitudinal, and u is a transverse vector because it is divergence-free
and vanishes at the boundary.

The longitudinal equation (2.12a) can be integrated once, which gives a Bernoulli-
like integral (see Wu et al. 2006)

P + ψ + νχ = g(t), (2.13)

with g(t) being a time-dependent function. On the other hand, by taking curl of
(2.12b) one recovers the vorticity equation. Using (2.5), the transverse equation (2.12b)
can be fully decomposed by HWD, and the helical amplitude ûs(k) is governed by
the dynamical equation

∂ûs

∂t
(k, t) = −l̂s(k) − νd̂s(k), (2.14)

where l̂s is the helical coefficients of l. Then, by (2.10), we may cast (2.14) into(
∂

∂t
+ νk2

)
ûs = −l̂s − ν

∮
∂D

(n × ω) · φ∗
s (k, x) dS, (2.15)

where the second term on the right is a consequence of the Proposition given above.
Equation (2.15) is the general form of the dynamic equation for the helical

coefficients in an arbitrary single-connected domain. The boundary integral therein
makes wall-bounded flow differ from flow in a periodic box. Previous HWD studies
of the homogeneous turbulence belong to the latter case. But on the wall with a no-
slip condition, usually the vorticity has a tangential component, thus the boundary
integral will affect the time rate of the helical amplitude.

The first term on the right-hand side of (2.15), l̂s , represents the influence to the
helical amplitude ûs of the nonlinear interactions among helical modes, whose explicit
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expression can be derived. By (2.5), we have

l̂s(k) =

∫
D

l(x) · φ∗
s (k, x) dx =

∫
D
(ω × u) · φ∗

s (k, x) dx. (2.16)

As shown before, the velocity and vorticity expansions are

u =
∑
sp

∑
p

ûspφsp
(p, x), ω =

∑
sq

∑
q

sqqûsq φsq
(q, x), (2.17)

where sp, sq = ±1 are the polarity indices associated with the wavenumber vectors p
and q, respectively. Substituting these into (2.16), and after some algebra, we get

l̂s(k) =
∑
sp,p

∑
sq ,q

ûsp (p)ûsq (q)I s
spsq

(k|p, q) (2.18)

with

I s
spsq

(k|p, q) =
spp − sqq

2

∫
D
[φsp

(p, x) × φsq
(q, x)] · φ∗

s (k, x) dx (2.19)

being the mode-interaction function. It represents the influence on mode (s, k) of the
nonlinear interaction between modes (sp, p) and (sq, q). Its simplified version for the
periodic box has been derived by Waleffe (1992). However, as discussed in Turner
(1999, 2000), for other domains, even as simple as a channel domain, the behaviour

of l̂s can be much more complex.
The energy equation for each helical mode can be easily derived from (2.14):

1

2

∂

∂t
[ûs û

∗
s ] = Ns(k) − Ds(k), (2.20)

where

Ns(k) = −Re[̂ls(k)û∗
s (k)], Ds(k) = νRe[d̂s(k)û∗

s (k)], (2.21)

with ‘Re[ · ]’ denoting the real part, are the energy transferred into mode (s, k) by the
nonlinear mechanism and the viscous dissipation during the unit time, respectively.

2.3. Helical bases for a channel domain

To conduct an HWD analysis of the flow field in a bounded domain, one has to find
the helical bases of that domain. Suppose the channel domain is bounded by two
parallel walls at y = ±h, i.e. (x, y, z) ∈ [0, Lx]× [−h, h]× [0, Lz]. Hereafter, x, y and z

denote the streamwise, normal and spanwise coordinates of the channel, respectively.
The details of solving the helical bases are given in Appendix A. Here, for neatness,
the bases will be written as

φs(k, x) = ϕs(k, y) exp(ikπ · xπ), (2.22)

where subscript ‘π’ denotes the wall-parallel component of a vector and ϕs(k, y)
are the corresponding vector coefficients in (A 4) and (A 5). Notice that bases (A 4)
have kπ = 0 and are constant in two wall-parallel directions; actually they are the
circularly polarized waves given in Kraichnan (1973). Thus, bases (A 4) and (A 5) will
be referred to as the average and fluctuating modes, respectively.

Our expression (2.22) differs from that of Turner (2000) in two respects. First,
Turner (2000) set two walls at y = 0 and 2h, while we use y = ±h for the consistency
with the computation domain of our DNS. Second, Turner (2000) introduced two
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Figure 1. The sketch of channel flow with system rotation about an axis R parallel
to the wall.

sets of bases ∆(k, x) and σ (k, x) (following the notations there), which satisfy

∇ × ∆(k, x) = k σ (k, x), ∇ × σ (k, x) = k ∆(k, x). (2.23)

Then, these two basis sets were used to decompose a vector field and its curl,
respectively. The polarity index s was missing in Turner’s two-basis-set formulation.
In our study, only one basis set (2.22) is used for all quantities and the polarity index
remains, as for the periodic case. By doing so, not only is the computation cost of the
numerical HWD smaller (only coding for one set), but also we are allowed to analyse
the possible polarity-asymmetry caused by the system rotation.

3. Helical-wave decomposition of rotating channel flow
3.1. Configuration of the rotating channel

As shown in figure 1, we assume that the channel rotates with a constant speed
around an axis parallel to the walls. In the rotating frame of reference, the NS
equation (2.11b) becomes

∂u

∂t
+ l + 2R × u = −∇P + ν∇2u, (3.1)

where R is the rotating vector of the system and P is the modified total pressure to
include the potential of the centrifugal force.

There are two important non-dimensional parameters, the Reynolds number and
the rotation number representing the ratio of the Coriolis force to the inertial effect,
defined as

Re =
Uh

ν
, Ro =

2Rh

U
, (3.2)

with R = |R| and U being a characteristic velocity. The rotation number is the
reciprocal of the Rossby number Rs.

3.2. Helical-wave decomposition of the dynamic equation

To apply the theory, one has to find the HWD of the Coriolis force 2R × u in (3.1).
For R parallel to the wall, there is

∇ × (R × φs) = −R · ∇φs = −i(R · kπ)φs = − is(R · kπ)

k
∇ × φs, (3.3)

where (2.2a) has been used for deriving the last equality. We thus find

R × φs = − is(R · kπ)

k
φs + ∇ψs, (3.4)



Helical-wave decomposition and streamwise-rotating channels 99

in which a harmonic potential ψs is introduced to satisfy the boundary condition.
Then, the helical coefficient of the Coriolis force is

ĉs(k) =

∫
D

(
2R ×

∑
s,p

ûsφs(p, x)

)
· φ∗

s (k, x) dx = − i2s(R · kπ)

k
ûs. (3.5)

Notice that when R · kπ = 0, we have ĉs(k) = 0, indicating that the Coriolis force does
not affect the helical modes whose kπ is perpendicular to the rotating axis.

In the rotating frame of reference, the dynamic equation (2.14) for ûs(k) is now
generalized to

∂ûs

∂t
= −l̂s(k) − νd̂s(k) +

i2s(R · kπ)

k
ûs. (3.6)

Similarly, to the kinetic energy equation (2.20) we need to add the Coriolis term

Re[ĉs(k)û∗
s (k)] = Re

[
− i2s(R · kπ)

k
ûsû

∗
s

]
= 0, (3.7)

i.e. the Coriolis force only affects the phase angle of the helical coefficient ûs(k) when
k is not perpendicular to the rotating axis, and does not change the amount of
kinetic energy carried by each helical mode. Thus, the energy equation for a rotating
channel is precisely the same as (2.20). For a rotating channel with R parallel to
the walls, the time rate of the kinetic energy is still determined by Ns(k), which is
the nonlinear energy transferred into mode (s, k) via the nonlinear interaction, and
Ds(k), the viscous dissipation.

3.3. The inertial waves in channel flow

As addressed by Greenspan (1969), an unbounded rotating fluid may carry inviscid
IW. This kind of wave may still exist in a bounded fluid with system rotation. Maas
(2003) solved the IW for the channel rotating around the axis perpendicular to the
walls. Now, by the helical basis functions (2.22), we can construct the IW solutions for
the channel domain rotating around the axis parallel to the wall. The methodology is
similar to that in Greenspan (1969) and Waleffe (1993). In doing so, we assume the
waves are effectively inviscid.

For fluid in a channel domain without basic flow, the IW solution and its
characteristics are very similar to those in an infinite domain, which are reported
in Appendix B. Here, we only consider the IW in a channel with basic mean flow,
and will compare the theory with the numerical results in § 5.

Suppose the channel has a steady mean flow with velocity and vorticity profiles
denoted by U(y) and Ω(y), and the fluctuating part denoted by u and ω, respectively.
We now look for possible IW solutions and the conditions for their existence. The
inviscid equation of the fluctuating vorticity reads

∂ω

∂t
+ ∇ × l + u · ∇Ω − ω · ∇U = 2R · ∇u + Ω · ∇u − U · ∇ω, (3.8)

where l = ω × u − ω × u. Hereafter, the overline means taking the average over (x, z)
plane and time.

By the form of the basis (2.22), assume the equation has the formal solution

u = ϕs(k, y) exp[i(kπ · xπ − fst)],

ω = skϕs(k, y) exp[i(kπ · xπ − fst)],

}
(3.9)
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which leads to l ≡ 0. The frequency fs will be determined later. The last two terms
on the left-hand side of (3.8) can be cast as

u · ∇Ω − ω · ∇U = uy(∂yΩ − sk∂yU), (3.10)

where ∂y stands for the partial derivative with respect to y. Then, if the above
expression vanishes or the mean flow satisfies an IW condition,

∂yΩ = sk ∂yU or Ω − skU = 2Cπ, (3.11)

with Cπ being a wall-parallel constant vector, one obtains a dispersion relation

fs = −2s(R + Cπ) · κ = −2sRef · κ, (3.12)

where the effective angular speed Ref = R + Cπ and κ = k/k. This formula has the
same form as (B 2). Thus, a mean flow satisfying the IW condition (3.11) allows for
the IW solution (3.9) and modifies the angular velocity R by a constant vector Cπ.
The phase and group velocities are also modified to

cp = −2sRef · κ

|kπ|2 kπ, (3.13)

cg = −2s

k3

[
k2

yRef + kπ × (Ref × kπ)
]
, (3.14)

respectively.
The IW condition (3.11) requires that the two vectors ∂yΩ and ∂yU must be parallel

to each other, and fixes the magnitude of the wavenumber vector as

Kin = |∂yΩ |/|∂yU|. (3.15)

Moreover, the polarity of the inertial wave is +1 or −1 if ∂yΩ and ∂yU are in the
same or opposite direction, respectively. We will verify the theoretical predictions by
the numerical results in § 5.

4. Numerical simulations and turbulence statistics
In this section, we present our numerical HWD analysis. We have carried out

DNS for R pointing to both streamwise and spanwise directions; however, in this
paper, we focus solely on the former case. We first describe the DNS method and
the characteristics of the mean flow in a streamwise-rotating channel. We then apply
HWD to the data to display the statistical dynamics of the helical modes.

4.1. Numerical method and mean-flow statistics

Our DNS employs the classic pseudospectral method as in Kim, Moin & Moser
(1987). For spatial discretization, it uses the Fourier–Chebyshev expansion, while
for temporal evolution, convection and viscous terms are advanced by the explicit
Adams–Bashforth and implicit Crank–Nicolson schemes, respectively. The Coriolis
force is treated as the convection term. The 3/2 rule is utilized for the de-aliasing of the
nonlinear term. Several different rotation rates were computed. The initial condition
for the rotating cases was taken as an instantaneous field extracted from a non-
rotating fully developed turbulent channel flow. All the flows are driven by a constant
mean pressure gradient in the streamwise direction. The length and velocity are non-
dimensionalized by the channel half-height h and the wall-friction velocity uτ0 of the
initial non-rotating channel flow, which has a Reynolds number Reτ0 = uτ0h/ν = 180.
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Case Ro Lx × 2h × Lz Nx × Ny × Nz Rsb Reb Kin

ST5 5 4π × 2 × 2π 128 × 129 × 128 3.104 2793.5 5.070
ST10 10 4π × 2 × 2π 128 × 129 × 128 1.497 2694.1 5.345
ST10F 10 4π × 2 × 4π 128 × 129 × 128 1.438 2587.6 4.953
ST20 20 4π × 2 × 2π 128 × 129 × 128 0.676 2435.0 4.770
ST20F 20 4π × 2 × 4π 128 × 129 × 128 0.644 2319.6 4.645
ST30 30 8π × 2 × 4π 256 × 129 × 256 0.413 2230.1 5.255

Table 1. The parameters used in DNS, and statistics of the flows.

The corresponding rotation number is defined as Ro = 2Rh/uτ0. In addition, based
on the mean bulk velocity in the streamwise direction, the global Reynolds number
and Rossby number are given by

Reb =
hUb

ν
, Rsb =

Ub

2Rh
with Ub =

1

2h

∫ h

−h

U (y) dy. (4.1)

These parameters of the DNS are listed in table 1.
It is well known that when a streamwise rotation is applied to the channel and

pipe flow, very long structures appear in the central flow region, e.g. the experiments
and DNS of the channel flow by Recktenwald et al. (2007) and the DNS of the pipe
flow by Orlandi & Fatica (1997). Thus, the streamwise length of the computational
domain must be long enough to capture these structures. Wu & Kasagi (2004) used
a 5π × 2 × 2π box for the streamwise rotating rate up to Ro = 15. Oberlack et al.
(2006) and Recktenwald et al. (2007) chose 4π × 2 × 2π for Ro � 6.5 and doubled the
sizes in (x, z) directions for larger Ro. In our simulations, the box sizes at lower Ro

are the same (for Ro = 5) or smaller (for Ro = 10, 20) than the aforementioned ones;
however, at the largest Ro = 30, we double the lengths in both the x and z directions.
It should be mentioned that the streamwise lengths in this study are comparable
to that of the pipe in Orlandi & Fatica (1997) for similar rotation numbers. The
sufficiency of the box sizes will be further discussed later by the two-point correlation.

The total computation time is 80h/uτ0 for ST05 and 100h/uτ0 for other cases. The
statistics are sampled over the last 40h/uτ0 after the flow reaches a steady state, i.e. the
total energy fluctuating around a constant value and the total shear stress reaching
a linear profile. Although the time duration for sampling is much shorter than that
of Recktenwald et al. (2007) (≈ 172h/uτ0) and Oberlack et al. (2006) (225uτ0/h), it is
longer than that of Wu & Kasagi (2004) (12h/uτ0) and comparable with that of
Alkishriwi et al. (2008) (≈ 42h/uτ0). We believe the value is sufficient for computing
the statistics. In figure 2 the mean-velocity profiles U and W are plotted. The
streamwise mean velocity decreases as Ro increases, and an antisymmetric secondary
mean flow develops in the spanwise direction. In this study, the system rotation is in
the anticlockwise direction; thus, in figure 2(b), the two peaks near the walls (referred
to as the outboard peaks) are in the same direction as the system rotation, while the
two peaks near the centreline (referred to as the inboard peaks) are in the opposite
direction to the system rotation. This tendency has been found by many simulations
such as Wu & Kasagi (2004), Oberlack et al. (2006), Recktenwald et al. (2007) and
Recktenwald et al. (2009). When Ro becomes larger, the outboard peaks of W are
stronger, while the reverse flow at the centre region first increases for Ro from 5 to 20,
then decreases for Ro = 30. It seems that to fully clarify this non-monotonic trend,
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Figure 2. The profiles of the mean flows in the streamwise and spanwise directions.
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Figure 3. Comparisons of the mean profiles between two different domain sizes for Ro = 10
and 20. (a) Only half of the channel is shown in wall unit.

one needs simulation at even larger Ro. Later, we will show that other statistics also
have non-monotonic dependence on Ro.

In order to observe the effect of the domain size, we double the spanwise length of
Lz for Ro = 10 and 20 but keep the streamwise length Lx the same, as listed in table 1.
Figure 3 plots the mean-velocity profiles for Cases ST10, ST10F, ST20 and ST20F.
The increase of Lz reduces the streamwise mean velocity at the central region, but
hardly changes its near-wall behaviour. Meanwhile, the outboard W peaks decrease
and the inverse flow at the channel centre is enhanced when Lz is doubled. These
phenomena may imply that the mean velocity for the streamwise-rotating channel
is affected by the domain size, or the aspect ratio Lx/Lz. Alkishriwi et al. (2008)
stated that Lz in the order of 10h should be sufficient to use periodic conditions in
the spanwise direction. To clarify the domain-size influence, more simulations with
different channel configurations are necessary, which we leave as an open issue. Our
focus below is the underlying physics in the streamwise-rotating channel, such as the
mechanism of the reverse spanwise flow and the flow structures.
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4.2. Numerical helical-wave decomposition investigation and energy spectra

To conduct the HWD analysis of the flow data obtained by DNS, the flow fields
stored during the simulations were projected onto the HWD bases (2.22) afterwards.
Since in the x and z directions both DNS and HWD employ the Fourier expansion,
the fast Fourier transform (FFT) is applicable for these homogeneous directions. In
the wall-normal direction, one needs to transform from the Chebyshev polynomial
Tj (y) (j = 0, . . . , N, with N being the highest order of the polynomials) in DNS
to the vector coefficients ϕs(k, y) in HWD bases (2.22). Actually, the transformation
matrix between these two bases is given by

Msj (k) =

∫ h

−h

Tj (y)ϕ∗
s (k, y) dy, (4.2)

and can be computed explicitly prior to the numerical HWD. Then the helical
coefficient is given by

ûs(k) =

N∑
j=0

ũj · Msj (k), (4.3)

where ũj is the coefficient of the Fourier–Chebyshev expansion in DNS. More details
are reported in Yang (2009).

In the following HWD investigation, we focus on four cases, which are ST05,
ST10F, ST20F and ST30. Based on the helical coefficients of the velocity field, the
helical energy spectrum is defined for the fluctuating flow as

Es(k) =
1

2

|kπ|	=0∑
I (k)

ûs(k)û∗
s (k), (4.4)

with I (k) being an interval of the magnitude of the wavenumber vectors with mid-
point k. Throughout this paper, the interval width is set to be π/2 since the wall-normal
wavenumber ky has the largest step size of π/2 among the three components of k.
The fluctuating energy contained in a single polarity is Eas =

∑
k Es(k).

For a non-rotating channel, our numerical results have revealed that the energy is
evenly distributed between two polarities (not shown here). For a rotating channel,
the time history of the ratios Ea−/Ea+, an indicator for the polarity-symmetry, is
plotted in figure 4. Clearly, the streamwise rotation induces an asymmetry between
opposite polarities. The fact Ea−/Ea+ > 1 for all cases indicates that the negative
polarity with s = −1 contains more energy than the positive one. This asymmetry
becomes stronger as Ro increases up to 20. But it seems that the ratio is smaller for
Ro = 30 than that of Ro = 20.

The non-monotonic dependence of Ea−/Ea+ on Ro is of interest because
similar non-monotonicity has also been discovered in a spanwise-rotating channel
(Grundestam et al. 2008) and decaying turbulence (Bourouiba & Bartello 2007). To
see if the domain size is a factor, we compare in figure 5 the same ratio for different
box sizes with Ro = 10 and 20. The curves indicate that extending the computing
box from 4π × 2π to 4π × 4π only slightly affects the polarity-asymmetry. Thus, very
likely, the non-monotonic dependence of Ea−/Ea+ on Ro is not solely caused by the
domain size. However, as pointed out by one of the referees, to achieve a conclusive
clarification it would be highly desirable to perform more simulations with the same
domain for different rotation rates.
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In figure 6 the normalized time-averaged spectra Es(k) are plotted for all four
different rotation numbers Ro. In this subsection, all the spectra are normalized by
the respective total fluctuating energy of each case. A remarkable feature is that as
Ro increases, the energy tends to concentrate to the modes with negative polarity and
certain wavenumber. For Case ST05, a dominant wavenumber does not yet form.
But for higher rotating rates, the wavenumbers with the highest energy fall into the
same interval I (Km), with Km = 3π/2 denoting the dominant wavenumber. Compared
to the non-rotating case, the streamwise rotation induces the large scales (small k)
containing more energy, especially for the negative polarity. The energy carried by
small scales (large k) are slightly less than that of the non-rotating case. The coherent
structures responsible for this feature will be addressed in § 5.
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Figure 7. The time-averaged compensated spectra for each polarity. (a) s = 1, k−5/3E+;
(b) s = −1, k−2E−.

In homogeneous turbulence with background rotation, it is well known that the
strong system rotation causes the scaling law of the energy spectra to depart from
k−5/3. When forced at a certain wavenumber kf , a k−2 scaling appears at the region
k > kf despite the different choices of kf (e.g. see Yeung & Zhou 1998; Smith &
Waleffe 1999; Mininni, Alexakis & Pouquet 2009; Thiele & Müller 2009). For the
streamwise-rotating channel, it is reasonable to regard the most energetic wavenumber
Km as the forced one. (In the next subsection, we will further show that Km is also
the wavenumber obtaining energy from the mean flow at the highest rate.) In figure 7
the compensated energy spectra are plotted for each polarity in a full log scale.
Interestingly, as Ro becomes larger, the spectrum E+(k) develops a distinct k−5/3

scaling region similar to the non-rotating homogeneous turbulence, while a k−2

scaling appears in the spectrum E−(k) at region k >Km = 3π/2, which is similar to the
rotating homogeneous case. These two regions with different scaling laws are quite
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obvious for rotating rates Ro = 20 and 30. The plots also show that the scaling region
of Case ST20F is broader than Case ST30.

Figure 8 shows the compensated spectra of the total fluctuating energy. Although
the negative polarity contains more energy than the positive one, the total energy
spectra shows a k−5/3 scaling as the E+ spectra. Smith & Waleffe (1999) found that
the total spectra obeyed a k−5/3 scaling when Rs = 0.35 and changed to k−2 for
Rs = 0.17, where the Rossby number was defined as Rs = (k2

f εf )1/3/R based on
the external energy input rate εf and the forcing wavenumber kf . For channel flow,
a similar Rossby number may defined as Rsp = (K2

mUb∂xP )1/3/R, where ∂xP is the
mean pressure gradient and Ub∂xP may be regarded as a energy input rate. For Case
ST30 there is Rsp ≈ 0.43. Hence, the rotation in our simulations may not be strong
enough to alter the total spectra. It is of significant interest to further explore in
the future whether these different scaling laws are a general trend and what is the
underlying mechanism.

4.3. Nonlinear energy transfer

We now investigate the energy transfer caused by the nonlinear interactions among
the helical modes. As indicated by the kinetic energy equation (2.20), the time rate
of the kinetic energy in each helical mode is determined by two effects, the nonlinear
interaction and the viscous dissipation. The pressure term is projected out when
conducting HWD to the NS equation. The energy transfer function may be defined
as

Ts(k) =

|kπ|	=0∑
I (k)

Ns(k), (4.5)

which denotes the amount of the energy flowing into the modes with |k| ∈ I (k)
and polarity s during the unit time. The total dissipation for the fluctuating flow is
Da = ν

∑
s,k Ds(k). In this subsection, all the transfer functions are normalized by Da

for each case.
Since the energy spectra have shown asymmetry between two polarities, one also

expects the asymmetry between T+ and T−. Figure 9 shows that this is indeed so. The
maximal values of T+ are reduced for three cases with Ro � 10, while a new strong
peak appears at Km in T− curves for Ro = 20 and 30. Therefore, the most favourable
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Figure 9. The total energy transfer functions Ts . In (b) and the following figures the vertical
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modes, i.e. with wavenumber Km and negative polarity, gain energy at the highest
rate. Both T+ and T− are positive for almost all wavenumbers. Thus, the fluctuating
modes obtain energy at all scales, which can only be from the mean flow.

In order to investigate the nonlinear energy transfer in more detail, we decompose
the transfer function into three distinct parts. In the physical space, the fluctuating
part of the NS equation can be written as

∂u

∂t
+ L + 2R × u = −∇P ′ + ν∇2u, (4.6)

where P ′ is the fluctuating part of the modified pressure P and the fluctuating Lamb
vector L can be divided into

L = l1 + l2 + l3 = Ω × u + ω × U + (ω × u − ω × u ). (4.7)

Throughout this subsection, (U, Ω) denote the mean flow and (u, ω) denote the
fluctuating quantities. Applying HWD to L, three different nonlinear functions and
the transfer functions can be defined, as in (2.20),

Nis(k) = −Re[ l̂is(k)û∗
s (k)], Tis(k) =

|kπ|	=0∑
I (k)

Nis(k), (4.8)

where l̂is , with i = 1, 2, 3, are the helical coefficients of li in (4.7). By their corresponding
terms in the physical space as given by (4.7), one may interpret T1 and T2 as the
nonlinear interactions between the fluctuating modes and the mean flow, and T3 as
the nonlinear interactions among the different fluctuating modes.

By the definitions of li , it is apparent that u · l1 ≡ 0 and
∫

u · l3 dx = 0, thus the
corresponding transfer functions satisfy∑

k,s

T1s(k) =
∑
k,s

T3s(k) = 0. (4.9)

In other words, T1 and T3 do not change the total fluctuating energy, but only affect
the energy distribution among the wavenumbers and polarities. Thus, according to
the general form of the energy equation (2.20), the equation for the total fluctuating
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energy Ea(t) = Ea+ + Ea− reads

∂Ea(t)

∂t
=

∑
k,s

T2s(k, t) − Da(t). (4.10)

Then, when the turbulent channel flow has reached the steady state, after a long-time
average one has

Da =
∑
k,s

T2s, (4.11)

namely the total dissipation is solely balanced by the T2 term from a long-time view.
In figure 10 the three transfer functions are shown for four rotating rates. The T1

and T2 curves reveal two different effects of the mean flow on the fluctuating modes.
First, T2s is positive for all wavenumbers, thus this term induces the energy flowing
into the fluctuating modes. This energy may only comes from the mean flow. The
streamwise rotation shifts the T2 maxima to the wavenumber Km of the most energetic
helical modes, as shown in figure 6. For Case ST05, the T2− peak has moved towards
Km, while the T2+ curve only changes slightly compared with the non-rotating case.
For the three cases with bigger Ro, both T2s with s = ±1 reach the maxima at Km,
but the negative polarity has stronger peak than the positive one.

We have explained that the T1 term does not change the total fluctuating energy but
represents a redistribution of the turbulent energy among the helical modes under the
influence of the mean flow. As the second effect of the mean flow on the fluctuating
modes, the T1 curves in figure 10(a) further indicate that the large scales lose energy
and the small scales gain energy. The negative peaks are not located at Km, but at a
wavenumber slightly smaller than Km. On the other hand, the T3 term represents the
energy transfer caused by the nonlinear interaction between the fluctuating modes.
The overall behaviour of T3s is similar to that of T1s , i.e. negative at large scales
and positive at small scales. Notice that the location of T3− minima stay at the
wavenumber slightly larger than Km. It is interesting that for s = −1 the locations
of Ti− extrema for different i do not coincide with each other. Specifically, the most
energetic modes with k ∈ I (Km), which obtain energy at the highest rate via T2−, lose
energy at a smaller rate via T1− and T3− than those at the adjacent wavenumbers.
Thus, the net rate of the energy transfer into the interval I (Km) has the largest value,
as shown in figure 9(b).

5. Inertial waves and long inclined vortex clusters
5.1. Inertial waves

We have shown in § 4.1 that the secondary mean flow W in the spanwise direction
has a reverse profile at the central region of the channel. This phenomenon has also
been discovered, to our knowledge, in all the numerical simulations of the streamwise-
rotating channel flow in the existing literature. Oberlack et al. (2006) stated that this
reverse W profile was unlikely to be caused by the large-scale structure because no
such structure was found in the flow visualization. Later Recktenwald et al. (2007)
conducted a similar DNS, where a reverse region appeared again in the W profile.
Based on the extended correlation area in the streamwise direction as the rotation
speed increases, the authors attributed the phenomenon to the turbulent structures
with very long streamwise scales. However, a major discrepancy showed up when
Recktenwald et al. (2007) compared their numerical and experimental results. In the
latter, the reverse W region can hardly be detected. To minimize the difference between
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Figure 10. The energy transfer functions Tis for four different Ro.

the boundary conditions of the DNS and experiments, Recktenwald et al. (2009)
replaced the periodic condition by two endwalls in the spanwise direction in their LES.
Although the reverse flow was reduced, it still exists in the LES results. Nevertheless,
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the two-point correlations in the streamwise direction of the experimental fields are
always smaller than that of the numerical data. Thus, in the numerical simulation,
there must be some structures with large streamwise scale.

This puzzling issue can be well clarified by the existence of IW associated with
vortical structures specifically for the turbulence in a streamwise-rotating channel.
On the one hand, in the preceding section we saw that in the streamwise-rotating
channel, the energy concentrates to certain helical modes with particular wavenumber
and polarity. On the other hand, we have shown in § 3.3 that by the helical basis
functions one can construct the IW solutions, as long as the mean flow satisfies the
IW condition (3.11). In the channel flow with the spanwise rotation, as shown by
many experimental and numerical results such as Johnston et al. (1972), Kristoffersen
& Andersson (1993) and Grundestam et al. (2008), the mean velocity U(y) only has
the streamwise component and thus the mean vorticity Ω(y) is along the spanwise
direction. Hence, ∂yΩ and ∂yU cannot be parallel to each other and no IW solution
exists. However, in the streamwise-rotating channel, a mean secondary flow develops
in the spanwise direction, which indicates that U and Ω have both the streamwise
and spanwise components. In this case, the inertial-wave solutions may exist.

Further information about the mean basic flow can be deduced from the IW
condition (3.11) for the streamwise-rotating channel. Let U (y) and W (y) be the mean
streamwise and spanwise velocity, respectively, such that Ω(y) = (∂yW, −∂yU ). The
substitution of this into (3.11) gives

∂Ωx

∂y
=

∂2W

∂y2
= sk

∂U

∂y
,

∂Ωz

∂y
= −∂2U

∂y2
= sk

∂W

∂y
. (5.1)

Oberlack et al. (2006) and our DNS have showed that ∂yU = 0 and W = 0 at y = 0.
Then the above equations have the solution

U = A cos(Kiny) + U0, (5.2a)

W = sA sin(Kiny), (5.2b)

with A being the amplitude and U0 an integral constant. In summary, therefore, in
the streamwise-rotating channel, the condition (3.11), which permits the inertial-wave
solutions, implies that the streamwise and spanwise mean-velocity profiles take the
cosine and sine forms, respectively.

To verify whether the IW condition is achieved in our flow, we use DNS data to
calculate the cosine of the angle spanned by ∂yΩ and ∂yU

cos α(y) =
∂yΩ(y) · ∂yU(y)

|∂yΩ(y)||∂yU(y)| . (5.3)

The variations of cosα as y are shown in figure 11(a) for all four cases. Clearly,
except for Case ST05, over a certain range at the centre region there is cosα ≈ −1.
This implies that not only for three cases with larger Ro the mean flows at the central
region do satisfy the IW condition, but also ∂yΩ and ∂yU have the opposite directions
in this region. Thus, the inertial-wave solutions should have s = −1, which matches
the fact revealed by HWD that the s = −1 modes overwhelm the ones with s = +1.
Besides, the IW condition (3.11) also fixes the wavenumber Kin of the inertial waves,
as given by (3.15), of which the calculated values by the mean-flow profiles of DNS
data are shown in figure 11(b). Except for Case ST05, Kin is basically around 5 in the
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region where cosα ≈ −1. This Kin value is in agreement with the wavenumber Km

with the highest energy, as shown by the helical spectra in figure 6.
In figure 11(b) the Kin curves are rather fluctuating at the centre of the channel,

where the computing meshes are coarsest through the channel span. In order to
determine the value of Kin more precisely, we use the theoretical prediction (5.2b) to
fit the W profiles given by the DNS, namely we determine the locations and values of
the two inboard peaks and the zero points of the W curves in figure 2(b), and identify
the distance between the two peaks as the half of Kin . The values of Kin found thereby
are listed in table 1. The peak value gives the amplitude A in (5.2b). In figure 12 the
fitting curves are compared with the DNS results for several cases. Clearly, between
the two inboard peaks, the theoretical prediction (5.2b) is perfectly verified by the
numerical result for all the cases, which further confirms that the reverse spanwise
flow is related to the inertial waves. For the streamwise mean flow, however, only in
a much smaller neighbourhood of the centreline does the theoretical prediction (5.2a)
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have reasonable accuracy (see figure 12a). The reason is that the mean-flow profile
of the latter is also affected by the external mean pressure gradient, while the former
mean profile is solely determined by the Reynolds stress produced by the fluctuating
flow, mainly from inertial waves.

The preceding discussion reveals that the inertial waves permitted by the mean
flow are exactly the most energetic helical modes found by HWD. They have the
comparable wavenumber k ≈ Kin ≈ Km and the same polarity s = −1. The reason
why Kin takes a similar value for different rotation numbers and domain sizes remains
unclear. One may speculate that this value is related to the global characteristic length
of the channel, i.e. the half-height h, which is the same for all cases. One supporting
example is that in an enclosed cylindrical domain rotating about its axis the natural
frequencies and the wavenumbers of the small inertial oscillation are determined by
the rotating speed and the geometry of the cylinder, i.e. the radius and height (see
Batchelor 1967).

Now, the discrepancy between the numerical and experimental results reported
by Recktenwald et al. (2007, 2009) may be explained as follows. In the numerical
simulations with periodic boundary condition, the flow periodicity permits the inertial
waves to travel infinitely. In experiment with a finite-length channel, however, the
inertial waves will quickly reach the boundary, which imposes new constraints on the
existence of the inertial waves. Furthermore, Phillips (1963) has found that the inertial
waves can be reflected at the wall and change the wavenumber after the reflection.
These mechanisms make a dominant wavenumber unable to survive for a long time.
Note that Recktenwald et al. (2009) abandoned the periodic condition in the spanwise
direction but not in the streamwise direction. This can only affect the inertial waves
whose wall-parallel wavenumbers have non-zero spanwise component. But still the
inertial waves travelling in the streamwise direction may exist. This is likely why in
Recktenwald et al. (2009) the mean profiles of LES did not match the experiments
even for very large computational boxes. Note that the existence of inertial waves
may also explain why all the streamwise two-point correlations approach a non-zero
value rather than exactly zero, e.g. our figure 14 shown below, and the figures in
Recktenwald et al. (2007) and Alkishriwi et al. (2008).

There remains one question to answer: why the mean profiles of Case ST05 do
not satisfy the IW condition. In solving the inertial-wave solutions, we have made
a strong assumption that the viscous term is negligible compared with the Coriolis
force. By the fluctuating NS equation (4.6), a local ratio between the Coriolis force
and viscous term, or a local Ekman number, can be defined as

γ (y) = (|2R × u|/|ν∇2u|), (5.4)

where | · | means the magnitude of the vector. The γ curves are shown in figure 13.
The maxima of γ locate at the centreline and increase as system rotates faster. When
Ro = 5, γ is below 5, while for all other three cases γ exceeds 10 at the centre region.
Thus, for the rotation rates considered here, the inviscid assumption is reasonable for
Ro � 10 such that the Coriolis force is larger than the viscous term by more than one
order at the channel centre. The viscous effect in Case ST05 is too strong to ignore.
A more accurate estimation of the critical Ro at which the viscous term is negligible
needs more simulations in the range Ro ∈ (5, 10). Another factor which may affect
this critical value is the channel size, since figure 11(a) and figure 12 show that the
mean velocity of Case ST20F satisfies the IW condition and the fitting law (5.2) over
a wider region than that of ST30.



Helical-wave decomposition and streamwise-rotating channels 113

y
–1.0 –0.5 0 0.5 1.0

γ

0

10

20

30

40

Figure 13. The ratio of the Coriolis force to the viscous term in the fluctuating momentum
balance. The arrow indicates the increase of Ro from 5 to 30.

5.2. Long vortex clusters

Having shown that in the central part of the channel there may exist structures with
large streamwise scales, which are very likely the carrier of inertial waves, we now
identify these structures in the physical space.

Consider first the the two-point correlation defined as

R(r, y) =
u(xπ, y, t) u(xπ + r, y, t)

u2(xπ, y, t)
, (5.5)

where u is the streamwise component of the fluctuating velocity, xπ = xex + zez is the
wall-parallel component of the location vector and r = rxex + rzez is the displacement
vector in a wall-parallel plane between two points. Two different correlations have
been computed: the streamwise two-point correlation R1(rx, y) with r = rxex and the
spanwise two-point correlation R2(rz, y) with r = rzez. These two functions reveal the
coherent length scales in two directions.

Figure 14 shows the contours of R1 and R2 in the (rx, y) and (rz, y) planes for
Case ST30, respectively. In the streamwise direction, the central region of the channel
has larger correlation than the near-wall region. Two parallel ridges with higher
correlation appear in the R1 contours and locate symmetrically at two sides of the
channel centreline. Due to these ridges, R1 does not approach to zero when rx reaches
the half-length of the channel, thus the corresponding structures extend over the whole
channel length. Furthermore, these ridges are at around y = ±0.35, and coincide with
the locations of the inboard peaks in the W profile (see figure 2b). This observation
confirms our previous statement that the reverse spanwise mean flow is associated
with the structures of large streamwise scale.

For the spanwise correlation R2 shown in figure 14(b), the correlation scales are
rather small compared to R1. As rz grows from zero, R2 quickly reaches its minima
at rz ≈ 1. The two negative peaks locate at y ≈ ±0.5, which are closer to the wall
than the ridges in R1 contours. The positive and negative peaks appear alternately
for several times when rz becomes even larger, indicating that the flow structures are
repeated rather regularly in the spanwise direction.

Two correlation functions indicate that similar structures appear simultaneously at
both sides of the centreline and have very long streamwise scales and relatively small
spanwise scales. We employ the λ2 criteria proposed by Jeong & Hussain (1995) to
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Figure 14. The contours of (a) the streamwise two-point correlation R1(rx, y) and (b) the
spanwise two-point correlation R2(rz, y) for Case ST30.

visualize these vortical structures. Figure 15 shows an iso-surface of λ2 for Case ST30
at the central region of the channel within the layer −0.7 < y < 0.7. The layer consists
of two parts, above and below the centreline, which are shown separately. It is obvious
that the small vortical structures are clustered and form very long columns. In each
layer, these columns have almost the same direction and make a small angle away
from the direction of the rotation axis. In the upper layer, the columns are inclined
to the positive z direction (see figure 15a), and vice versa in the lower layer shown
in figure 15(b). The orientation of the columns, either above or below the centreline,
coincides with the directions of the outboard peaks of W profile in figure 2(b).

Further observation on a series of instantaneous fields (not shown here) at sequential
time steps indicates that the inclined columns in figure 15 move to the right in the
(x, z) plane. Thus, for an observer at a fixed location in these regions, the passing
flow has a wave-like vorticity variation, which should be the material carrier of the
inertial waves. Similar twisted travelling waves have also been found in the instability
analysis of Masuda et al. (2008), where the Reynolds number is much smaller than
that of the present study.

In figure 15, we also show the contours of the fluctuating streamwise velocity at
two (x, z) planes with a distance y+ = 10 to the corresponding wall. Clearly, the
vortex columns at the centre region of the channel locate just above the low-speed
streaks near the walls. It is well known that these low-speed streaks are related to the
creation of the streamwise vortices. Now, a possible scenario can be proposed. Near
the lower wall, for instance, the system rotation induces a negative spanwise velocity,
as shown in figure 2(b), which causes the low-speed streaks twisting to the negative
z direction (see the background contours in figure 15b). Thus, the accompanying
near-wall streamwise vortices will also incline to the same direction. Then the twisted-
streamwise vortices are lifted to the core region of the channel, where the viscous
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Figure 15. Top view of the vortical structures in the central part of the channel, which
are illustrated by an iso-surface of λ2 for Case ST30. The background contours are the
fluctuating streamwise velocity u on the y+ = 10 planes away from the corresponding walls.
(a) 0 < y < 0.7; (b) 0.7 < y < 0.

effects are relatively small. Under the influence of the background rotation, the vortices
form long columns as in the homogeneous rotating case, instead of evolving freely
as in the non-rotating channel. The inclined vortex columns then travel downstream
under the external mean pressure gradient in the streamwise direction. Because the
columns are not parallel to the rotating axis and the direction of the mean pressure
gradient, it will cause a transverse group velocity in the spanwise direction.

In the homogeneous rotating turbulence, the flow exhibits the quasi-two-
dimensional columnar structures that show the cyclone/anticyclone-asymmetry. This
has been confirmed by both the numerical simulations of Bartello, Métais & Lesieur
(1994), Smith & Lee (2005) and Bourouiba & Bartello (2007), and the experiments of
Morize, Moisy & Rabaud (2005), Staplehurst, Davidson & Dalziel (2008) and Moisy
et al. (2010), to name a few. By using the method in those literatures, we may now
examine the analogy of the twisted clusters in a streamwise-rotating channel to the
phenomena in the homogeneous rotating turbulence. Specifically, the skewness of the
total streamwise vorticity is computed at every wall-parallel plane as

S(y) = ω3
x

/(
ω2

x

)3/2
, (5.6)

which is plotted in figure 16 for four rotating rates and compared with the non-
rotating case. For a streamwise-rotating channel, S is negative around the centreline
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Figure 16. The skewness S(y) for four rotating cases and the non-rotating case.

and in the near-wall regions. In between, S takes a small positive value for Ro � 10,
which implies a weak preference for the cyclone streamwise vorticity (in the same
direction as R), similar to the homogeneous case. Again, a non-monotonic behaviour
appears as Ro increases. Bourouiba & Bartello (2007) have revealed that in decaying
turbulence the skewness reaches a maximum at some intermediate Rossby number,
and then decreases for higher rotating rate. Thus, there exists a certain analogy
between the rotating channel and decaying turbulence on the cyclone/anticyclone-
asymmetry, though the domain size may still have some effects on the
skewness.

We have also tried to estimate the group velocity of the vortex columns by
computing the two-time–two-point correlation of the streamwise vorticity ωx for a
fixed time separation �t , which is given by

R(r, y) = ωx(xπ, y, t) ωx(xπ + r, y, t + �t). (5.7)

Two such correlations were calculated, which are R3 with r = rxex and R4 with
r = rzez, respectively. The �t for R3 is 0.1. For R4 we choose a bigger time separation
�t = 0.2 because the spanwise group velocity is relatively small. The value of rx

(or rz) where the correlation reaches the first maximum should measure the distance
travelled by the fluctuating quantity over time duration �t , which determines the
group velocity.

In figure 17, we plot the typical contours of R3 and R4 for Case ST30. The
streamwise group velocity is positive for −0.7 < y < 0.7. Around the centreline, the
R3 maxima locates at about rx ≈ 1.5, which gives cgx ≈ 15. The R4 contours show that
the group velocity is positive below the centreline and negative above the centreline.
They are consistent with the direction of the reverse spanwise flow. The magnitude
of cgz at y = ±0.3 is approximately 0.2/0.2 = 1, which is larger than the mean
spanwise velocity W ≈ 0.45. Unfortunately, the error for the group velocity estimated
by this method depends strongly on the mesh size and the time separation as dx/�t

or dz/�t . For the grids used in ST30 and �t we chose the errors for cgx and cgz

to be about 0.98 and 0.25, respectively, too large to make good quantitative sense.
Increasing �t can reduce the error but the correlation will decrease, which will cause
inaccuracy in locating the peaks. Thus, finer meshes are needed to calculate the
accurate group velocity and validate the relation (3.14).
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Figure 17. The contours of the two-time–two-point correlations R3(rx, y) and R4(rz, y) for
Case ST30 in the region −0.7 < y < 0.7.

6. Conclusions
Although it has long been known that HWD is available for bounded domains

and has great advantages in the studies of flows with system rotation, most of the
existing works have been confined to the periodic or infinite domain for simplicity.
In this paper, we first review the general formulation of HWD for an arbitrary
single-connected domain. We show that for the incompressible flow with no-slip
boundary, an extra boundary integral appears in the dynamic equation of a single
helical mode, since the vorticity usually has non-zero wall-parallel component on the
no-slip boundary. In order to apply the theory to channel flow, we solve the helical
bases for this model domain. The bases can then be used to decompose the flow field
into helical modes with different scales and polarities.

For the channel rotating about an axis parallel to the walls, we derive the HWD of
the Coriolis force and prove that this term does not affect the energy contained in a
single helical mode. Meanwhile, the helical basis functions are employed to construct
the inertial-wave solutions in a channel domain. Theoretical results reveal that when
the channel has a basic mean flow, the inertial waves still exist if the mean flow satisfies
an IW condition. The mean flow also determines the polarity and wavenumber of the
inertial waves and other properties, such as the frequency, phase and group velocities.

To demonstrate the theory, we perform the DNS of the channel flow with streamwise
rotation and the numerical HWD of the flow fields. The helical energy spectra for
different rotating rates indicate that the streamwise rotation breaks the symmetry
between two opposite polarities. The negative polarity carries more energy than the
positive one. The energy concentrates to a particular wavenumber, which is the
same for all the rotating rates considered here. These observations imply that some
dominant structures of certain scales appear in the flow.

Studies have suggested that in a streamwise-rotating channel the reverse mean
flow in the spanwise direction is related to some large-scale structures in the core
region. We verify the IW condition by the mean flow obtained from DNS data. The
results show that the condition is indeed satisfied in the core region, and the profiles
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of the mean flow match the theoretical predictions perfectly, which confirms the
existence of the inertial waves. The wavenumber of the inertial waves determined by
the mean flow coincides with that of the most energetic modes in the helical spectra,
suggesting that the waves are associated with some strong coherent structures. By the
flow visualization, we show that these structures are very long vortex columns in the
central region of the channel, which make a small angle away from the streamwise
direction, i.e. the direction of the rotating axis. These vortex columns, which
move downstream in the wall-parallel plane, are very likely the carrier of the inertial
waves.

This study introduces some new questions to both numerical simulation and
experiment. In order to quantitatively clarify the relation between the vortex columns
and the inertial waves, one needs to conduct DNS with much finer meshes to
calculate the accurate group velocity. To detect the inertial waves experimentally,
the configuration of the channel should be chosen very carefully, since the
boundary introduces an extra constraint for the inertial waves to survive. Successful
measurement of the inertial waves has been done for the rotating tank by Bewley
et al. (2007). Another interesting subject is the non-monotonic behaviour of the flow
statistics as Ro increases. Similar behaviour has been shown in decaying turbulence
by Bourouiba & Bartello (2007). To clarify the non-monotonicity, the effects of the
domain size should be studied thoroughly. Also, the underlying mechanism of the
scaling laws exhibited by the helical spectra is of great interest. More simulations
with higher Ro and Re are needed to clarify those issues.

The authors acknowledge the very inspiring discussion with Professor F. Hussain
and the valuable comments of the referees. This work was supported in part by
the National Natural Science Foundation of China (Key Project No. 10532010).
The numerical simulations are conducted on the HP cluster at the Center of
Computational Science and Engineering at Peking University.

Appendix A. The helical bases for a channel domain
The helical bases depend only on the geometric property of the domain; for each

specific domain, they can be calculated once for all. For some simple domains, the
bases may be derived analytically. Morse & Feshbach (1953) gave a general formula
of the helical bases for the domain with rectangular, cylindrical, spherical or conical
shape. A similar formula was obtained later by Chandrasekhar & Kendall (1957),
which has been used by Morse (2005, 2007) to calculate the bases for a cylindrical
domain and finite-length rectangular boxes. For even more complex geometries, the
bases can be found numerically, e.g. the finite-volume algorithm of Boulmezaoud &
Amari (2000).

Here, we briefly describe the derivation of the helical bases for the channel domain
(x, y, z) ∈ [0, Lx] × [−h, h] × [0, Lz]. The periodic condition is employed at two
homogeneous directions. We use the formula given by Chandrasekhar & Kendall
(1957),

φs = ∇ψ × e +
s

k
[ek2ψ + (e · ∇)∇ψ], (A 1)

where e is one of the Cartesian unit vectors, and the scalar ψ satisfies the Helmholtz
equation,

∇2ψ + k2ψ = 0. (A 2)

The boundary condition for ψ is determined by ensuring n · φs = 0 at two walls.
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After the separation of variables, one finds out that the wavenumber can be written
in vector form as

k = (kx, ky, kz) =

(
2πm

Lx

,
lπ

2h
,

2πn

Lz

)
, (A 3)

with integers m, n = 0, ±1, ±2, . . . , and l = 0, 1, 2, . . . . The complete basis set is
given as follows.

(a) When m = n = 0 and l = 0, 1, 2, 3, . . .

φ = Π[0, 0, 1] for l = 0, (A 4a)

φs = Π[s cos(kyy), 0 , sin(kyy)] l is odd, (A 4b)

φs = Π[s sin(kyy), 0 , − cos(kyy)] l is even. (A 4c)

(b) When m, n = 0, ±1, ±2, . . . , with m2 + n2 	= 0, and l = 1, 2, 3, . . . , then for
odd l,

φs(k, x) =
Π

k

⎛⎜⎜⎜⎜⎜⎝
−i

√
k2

y + k2
z cos(kyy − sα)

s

√
k2

x + k2
z cos(kyy)

i
√

k2
x + k2

y cos(kyy + sβ)

⎞⎟⎟⎟⎟⎟⎠ exp[i(kxx + kzz)], (A 5a)

and for even l,

φs(k, x) =
Π

k

⎛⎜⎜⎜⎜⎜⎝
−i

√
k2

y + k2
z sin(kyy − sα)

s

√
k2

x + k2
z sin(kyy)

i
√

k2
x + k2

y sin(kyy + sβ)

⎞⎟⎟⎟⎟⎟⎠ exp[i(kxx + kzz)]. (A 5b)

Here, k = |k| and i is the imaginary unit. The constant and two phase angles are,
respectively,

Π =
1√

2hLxLz

, tan α =
kxky

kkz

, tan β =
kykz

kkx

.

The helical bases (A 5) have helix-like streamlines as in the periodic domain.
Wavenumber vector k determines the direction and geometric properties of helixes,
such as pitch length and diameter. Positive (negative) s corresponds to clockwise
(anticlockwise) rotation when one moves along the helix-like streamlines. More details
of the bases are reported in Yang (2009).

Appendix B. The inertial waves in channel without basic flow
Consider the channel with zero mean flow, i.e. U = Ω = 0. The inviscid vorticity

equation reads

∂ω

∂t
+ ∇ × (ω × u) = 2R · ∇u. (B 1)

Suppose (B 1) has the wave solution (3.9). Substituting (3.9) into (B 1) one finds the
following dispersion relation:

fs = −2s
R · kπ

k
= −2sR · κ, (B 2)
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Figure 18. A sketch of the directions of R, cp and cg for s = −1 for the zero-mean-flow case.

where κ = k/k and the last equality is because R has zero normal component. This
dispersion relation has the same form as in the homogeneous case (see Greenspan
1969). The phase and group velocities are, respectively,

cp = −2sR · κ

|kπ|2 kπ, (B 3)

cg = −2s

k3

[
k2

yR + kπ × (R × kπ)
]
. (B 4)

Thus, cp is along kπ in the wall-parallel plane, instead of k as in the homogeneous
domain. In the wall-normal direction, only standing waves with wavenumber ky exist
due to the constraint of the two walls. The short waves with large |kπ| travel slower
than long waves with small |kπ|. In figure 18, a sketch plot is shown to illustrate the
relative directions of R, cp and cg for negative polarity s = −1. For positive polarity
s = 1, cp and cg take the opposite directions to that in figure 18.

Greenspan (1969) showed that in an infinite domain cg is along k × (R × k) and
orthogonal to cp at the right side. When k ‖ R, i.e. the wave travels along the rotation
axis, one has cg = 0. But for the channel domain with no mean flow, the group
velocity cg turns from the direction of kπ × (R × kπ) towards R. When kπ and R are
parallel to each other, cp and cg will have the same direction as the rotating axis R.
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